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LElTER TO THE EDITOR 

On the equivalence of ANNNI model polytypes formed by 
square wave modulation and branching mechanisms 

D de Fontaine 
University of California, Department of Materials Science and Minerals Engineering, 
Berkeley, CA 94720, USA 

Received 4 July 1984 

Abstract. It is proved that long-period structures formed by a square wave modulation of 
a lattice are identical to those of stable phases found in the A N N N I  model. The proof is 
based on a continued fraction expansion of the modulation half period, producing structural 
formulae shown to be equivalent to those obtained by a structure-combination branching 
process. The same structures have been observed experimentally by high-resolution trans- 
mission electron microscopy in certain ordered alloys. 

In order to interpret certain x-ray diffraction patterns of ordered alloys featuring 
satellite reflections, Fujiwara ( 1957) proposed that the crystal structure was modulated 
by a periodic functionf(x), in which the coordinate x represented a continuous variable 
in the (crystallographic) direction of the observed long-wavelength modulation. In 
particular, Fujiwara showed that a square wave modulation could account quite well 
for both the positions and relative intensities of the satellite reflections. The modulation 
wavelength was written as A=2Muo,  the number M thus representing the half 
wavelength expressed in units of the lattice parameter a,  in the direction of the 
modulation. Actually, it is not necessary for the f ( x )  profile to be a sharp square 
wave: it suffices for the zeros of the modulating function to be equidistant on the x 
axis, a property which Fujiwara described as that of uniform mixing, as explained 
elswhere (de Fontaine and Kulik 1984, henceforth to be referred to as FK). A more 
proper condition on f (x )  is that it posess a Fourier spectrum containing only odd 
harmonics. For simplicity, however, we shall continue to refer to that class of modula- 
tions as ‘square wave’; the set of all such modulations of half period M = P/ Q (where 
P and Q are relative primes) will be denoted by the symbol S,. The numerator P, or 
commensuration number (FK), is seen to be equal to the number of lattice planes 
between two successive commensurations, where the lattice and the modulation are in 
step; the denominator Q is then equal to the number of half periods of the modulation 
within an interval of P planes. 

Figure l (a )  illustrates the effect of a square wave modulation of half-period M = 3 
on a lattice. The open and closed symbols may represent, respectively, (predominantly) 
positive (spin up) and negative (spin down) lattice plane magnetisation, or A-rich and 
E-rich planes in a binary AB alloy, or positive and negative antiphase shifts if the 
lattice planes have two-dimensional order (FK) etc. It is seen that the modulation 
creates a polytype of the original structure, with new unit cell of lattice parameter Pao 
if Q is even and twice that if Q is odd. The commensuration number P is here equal 
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Figure 1. Fujiwara phase (22121): ( a )  square wave modulation f ( x )  of period 2Ma,, with 
polytype period 2Pa, where a, is the (unmodulated) lattice parameter; ( b )  equivalent 
graph of corresponding structure-combination branching process, with partial domains X, ,  
Y, determined by continued fraction expansion algorithm. 

to 8. The sfrucruralformulu for this polytype is indicated just above the modulation 
profile in figure l ( a ) ,  and written in shorthand notation as (2*121), a notation pioneered 
by Fisher and Selke (1981). 

Polytypes resulting from the set of S,  modulations were called Fujiwam phases 
(FW) in FK.  In that paper, it was shown that the corresponding structural formulae 
could be derived by a continued fraction algorithm, proposed independently by Hubbard 
(1978) and by Pokrovsky and Uimin (1978) in a quite different context. The algorithm, 
in the notation of FK, is as follows: one first expands the half period M in a continued 
fraction 

Y2 n, +- 

Since M can be approximated as closely as desired by the rational fraction P / Q ,  the 
continued fraction expansion must terminate at some level, say k. At any intermediate 
level i, the integers n, are determined uniquely by the remainder ( r )  at level i - 1 : 

l / r i - ,  = n, + y l r i  

with 

-f< r, s +f (3) 

y, = r,/lr,l = * I .  (4) 

xo = no, Yo = no + yo, ( 5 %  b )  

so that 

Now define the sequences { X }  and { Y }  by the recursion formulae 
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xi = (xi-,)”l-’ yi-1 

y ,  = (xi-l)%+~z-’ % - I  

( i = 1 , 2  ,..., k-1). 

The formula for polytype of half period M is then 

(X) = x,. ( 6 )  

At any level O <  i <  k, Xi and yi will be called partial domains; Xo and Yo will be 
called majority and minority domains, respectively. The set of polytypes whose struc- 
tural formulae result from the application of the above algorithm will be designated 
as the C, set. Since the sets S, and C, have been shown elsewhere (FK) to be identical, 
both S,  and C, polytypes may be called FW phases. 

Thus far, the description of FW phases has been purely geometrical. However, in 
a remarkable .paper, Fisher and Selke (1981) showed that such structures could well 
result from a statistical mechanical model, the so-called axial next-nearest neighbour 
Ising ( A N N N I )  model. In particular, these authors showed that a low-temperature 
expansion of the exact free energy yielded (rigorously) stable phases of structural 
formulae (2’3), provided that the. ratio of next-nearest ( J 2  < 0) to nearest (JI > 0) 
neighbour interactions in the axial direction were greater than 5 in magnitude. A 
change of sign of .TI (antiferromagnetic) produced structures of the type (2’1), stable 
at low temperatures ( FK). More generally, it appears ( FK) that a scheme of interactions 
J can always be found which will yield stable low-temperature polytypes of structural 
formulae (X,’Yo), where Xo and Yo are, respectively, the ‘majority’ and ‘minority’ 
domains defined above. These phases have been called FS phases, for short (FK);  they 
are FW phases resulting from a continued fraction expansion terminating at level one. 

Fisher and Selke (1981) also mentioned that, at higher temperatures, the common 
boundary between two successive FS phases, say (2’3) and (2’+’3), may become unstable 
and split to produce the intermediate phase (2’32’+’3). In later papers, Duxbury and 
Selke (1983) and Selke and Duxbury (1984) showed, by mean-field calculations, that 
higher-temperature stable phases could indeed result from, as they put it, a structure- 
combination branching process. The set of structures derived in this manner will be 
denoted as the B, set, for short. The purpose of this communication is to prove the 
equivalence of C, and B, mechanisms: 

C f e  B, (7) 
In each direction, the proof will be carried out by induction. 

First note that the branching process in question can be represented by a graph, 
in fact by a (rooted) tree (figure 2). A particular structural formula, say (X)=X,,  
must be found at some branching point, or node of the tree, from which the path to 
the ‘root’ is unique. That path may be regarded as the ‘trunk’ of the tree, with ‘branches’ 
springing ‘right’ and ‘left’. Any two successive branches may lie either on the same 
side of the trunk (parallel configuration), or on opposite sides (anti-parallel configur- 
ation), as illustrated by branches at points t and U in figure 2(b) and ( a ) ,  respectively. 
Assignment of domain symbols X and Y to interbranch regions of the graph will turn 
out to depend on the nature of the branching, parallel or antiparallel. 

Let us prove that any C, structure can be obtained by a B, process. Assume that 
partial domains XiTl and Yi-l have been obtained correctly by the appropriate branch- 
ing tree. For arbitrary integer 1 ( > l ) ,  it is clearly possible to produce the formula 
x i - , ’ - ’  Y,-l by successive parallel branchings, as shown in figure 2, nodes p to s. The 
next two domains beyond points s and t, which we wish to relabel Xi and Y,, must 
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Figure 2. Sub-trees used in proof of equivalence of C, and B, processes: ( a )  antiparallel 
branching at (1 ,  U); ( 6 )  parallel branching at ( 1 ,  U). 

result from antiparallel branching (otherwise we would simply go on raising the 'power' 
I ) .  One alternative, yi-l = Y,, Xi-l'Y,-l =Xi, corresponding to yi = -1 in 
equation ( 5 d ) ,  is then obtained by branching at point U in antiparallel fashion (figure 
2(a)), the opposite alternative, corresponding to yi = +I,  is graphed by branching at 
U in parallel fashion (figure 2(b)). Arbitrarily high 'powers' of Xi can then be obtained 
by successive parallel branchings beyond node U, to reach, at w, the desired structural 
formula for level i:  Xi"Y,. Assignment of symbols X i + l  or Y,+l to that domain proceeds 
in a like manner. Since the procedure is obviously valid for transition from level 0 to 
1 (producing FS phase (X,'Y,)), the Cf+ B, part of the proof is completed. 

We now prove the converse: that any 'structure-combination branching process' 
gives rise to structural formulae conforming to the continued fraction algorithm. 
Assume that interbranch regions of the representative graph have been correctly labelled 
by X and Y symbols up to level i - 1. Beyond that level, arbitrary branching processes 
can be represented in all generality by a succession of sub-trees of the types illustrated 
in figure 2. Parallel branching from point p to s unambiguously leads to the strucutral 
formula Y,-l at s. Since antiparallel branching occurs at (k, t ) ,  resulting domains 
must be relabelled, the choice of symbols X i  or Y ,  depending on the type of branching 
at ( t ,  U). If the latter branching is antiparallel, Y, must be located at s, and X i  at t ,  
from consecutive antiparallel branching, yielding formula X i  Y,, can be lifted by 
parallel, labelling of domains must be inverted, and yi = + I  (figure 2(b)). Thus, it is 
seen that structural formulae of the Cf set can be assigned unambiguously to interbranch 
regions of an arbitrary sub-tree from level i -  1 to i. The ambiguity which may result 
from consecutive antiparallel branching, yielding formula X i  y ,  can be lifted by 
adopting the convention embodied in inequalities (3). Since the process just described 
is obviously valid in going from level 0 to 1, the B,+ C, part of the proposition is 
proved. Hence, the complete bijection (7) is proved. As an example, consider the FW 

polytype (2'121), pictured as a square wave modulation in figure l (a ) .  Its continued 
fraction expansion is 

M = 5 = 2 - 1/(2 +$), 
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with partial domains Xi, Y, ( i  = 0, 1,2) shown in the equivalent graph of figure 1 (b), 
in complete agreement with the results of the continued fraction algorithm. 

By this proof, and the one given in Appendix 1 of FK, it is thus established that 
polytypes resulting from (a) the square wave modulation mechanism S,, (b) the 
continued fraction algorithm C, and (c) the structure-combination branching process 
B, are identical. The practical significance of this result is that structural formulae 
which were introduced for the purpose of explaining certain diffraction patterns from 
long-period superstructures in ordered alloys are precisely the ones which also minimise 
the free energy of the ANNNI model. Added confirmation is provided by high-resolution 
transmission electron microscopy on, for instance, Ag,Mg alloys with periodic anti- 
phase boundaries (Portier er a1 1980). In these alloys, polytype structures can be 
analysed directly in real space: FS phases (2’1) are clearly seen, possibly also more 
general FW phases. Furthermore, since the low-temperature expansion of Fisher and 
Selke (1981) can be extended to the face-centred cubic lattice, a very good case indeed 
can be made for direct application of the ANNNI model to certain classes of long-period 
superstructures in ordered alloys: diffraction evidence, direct structure analysis, and 
statistical mechanics all converge to produce the same set of structural formulae, that 
of the Fujiwara phases (FW). 
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